مشتق دینی و ویژگی هایی برای توابع لیپشیتس و محاسبه روی خمینه های ریمانی

پایان نامه
چکیده

دراین رساله برآنیم برخی از مفاهیم و قضایای اولیه را از فضای هیلبرت به مجموعه های ریمانی گسترش دهیم, از جمله به مطالعه ی مفاهیم مشتق دینی , پروکسیمال زیردیفرانسیل و توابع زیردیفرانسیل پذیر در مجموعه خمینه ریمانی می پردازیم. بعلاوه ویژگی ای را برای هر یک از توابع لیپشیتس و محدب تعریف شده روی خمینه های ریمانی بیان و شرایط بهینه سازی کامل برای ساختن مسایل بهینه بر حسب مشتق دینی اثبات می کنیم. و نیز چند مثال از توابع لیپشیتس را می آوریم و با مثالی نشان می دهیم که رفتار لیپشیتسی توابع تعریف شده روی منفلدهای ریمانی به متریک ریمانی وابسته است

۱۵ صفحه ی اول

برای دانلود 15 صفحه اول باید عضویت طلایی داشته باشید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

نامساوی های تغییراتی روی خمینه های ریمانی

در این تحقیق مسئله ی نابرابری های تغییراتی را روی خمینه ی ریمانی مطرح می کنیم و پس از آن به بررسی وجود و یکتایی جواب برای مسئله ی نابرابری های تغییراتی روی خمینه های ریمانی می پردازیم و مسئله ی باز مطرح شده در این زمینه را مورد بررسی قرار می دهیم. هم چنین ارتباط بین مسئله ی نابرابری تغییراتی و مسئله ی بهینه سازی مقید را بیان می کنیم. مفاهیم افزایندگی و یکنوایی را روی خمینه های ریمانی تعریف نمود...

قضایای نگاشت باز و تابع ضمنی برای توابع غیر هموار و کاربردهای آن روی خمینه های ریمانی

هدف از این پایان نامه، ارائه یک قضیه ی نگاشت باز، برای توابع غیر هموار که الزاماَ لیپ شیتز نیز نیستند، می باشد. برای اثبات چنین قضیه ای از یک ژاکوبین تعمیم یافته که آن را ژاکوبین تقریبی می نامیم، استفاده می کنیم. و قضایای تابع وارون و تابع ضمنی را به عنوان نتایجی از قضیه نگاشت باز، اثبات می کنیم. هم چنین، به ارا ئه چندین قضیه ی نقطه ی ثابت برای نگاشت های تعریف شده روی خمینه های ریمانی کامل خواه...

15 صفحه اول

دورهای تحلیلی روی خمینه های مختلط

سال 1961 مایکل اتیه و هیتزبروخ برای این که کلاس دوری در همولوژی، تحلیلی باشد، شرط توپولوژیک پیدا کردند. برای این که دوری تحلیلی باشد، می بایست شرطی بدیهی برقرار باشد که منجر به حدس هاج خواهد شد. در این مقاله، شرطی از هندسه مختلط که از نظریه هاج تحمیل می شود بررسی خواهیم کرد. بخش اعظم مقاله به ایده های نظریه مانع توپولوژیک اختصاص دارد.

متن کامل

دوریها و متریکهای ناوردا در آنالیز مختلط

ساختن یک دوری که نسبت به رده ای از نگاشتها ناوردا باشد، یکی از ابزارهای اساسی در رهیافت هندسی به ریاضیات است. ایدۀ آن به کلاین و حتی ریمان برمی گردد. در این مقاله دوریهایی را در نظر خواهیم گرفت که نسبت به نگاشتهای دوسو تمامریخت خمینه های مختلط، ناوردا باشند. دوریهای متعددی با این ویژگی وجود دارند. تعدادی از آنها از توابع روی فضای مماس ناشی می شوند به همان شیوه ای که متریک ریمانی روی یک خمینه، ی...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


نوع سند: پایان نامه

وزارت علوم، تحقیقات و فناوری - دانشگاه تفرش - دانشکده ریاضی

کلمات کلیدی

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023